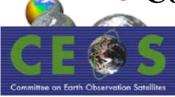


Quantitative assessment of C-band and X-band SRTM datasets over the CEOS-WGCV-TMSG test sites and intercomparison of C-band DEM with the OS® PANORAMA DTM

Jan-Peter Muller

Chair, CEOS WGCV Sub-group on "Terrain Mapping from satellites" MODIS & MISR Science Team Member (NASA EOS Project)
HRSC Science Team Member (ESA Mars Express 2003)



Overview

- Context: CEOS-WGCV "Terrain Mapping from satellites" Sub-Group (TMSG)
- TMSG test sites description and location
- Evaluation of SRTM C and X DEMs for UK test site
- Interpretation of SRTM elevation differences:
 - Forest mapping
 - Slope/Aspect effects
 - Mining activities
- Inter-comparison of SRTM DEM products with NextMap
- Use of SRTM for improving ERS-tandem DEMs
- Evaluation of SRTM accuracy and completeness for Spanish test sites
- Conclusions

CEOS WGCV Terrain Mapping

What is CEOS WGCV

- Committee on Earth Observing Satellites
- Working Group on Calibration/Validation (Chair: S. Ungar, GSFC)

• What is the mission of this sub-group?

- To ensure that <u>characteristics</u> of digital terrain models produced from Earth Observation sensors at global and regional scale are well <u>understood</u> and that products are <u>validated</u> and used for appropriate applications.

• What are the specific objectives of this group?

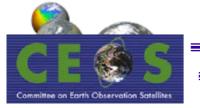
- To develop <u>specifications</u> for the generation of 'standardised terrain surface products with known accuracy' from similar sensing systems in the context of data continuity,
- to specify <u>evaluation methods and statistics</u> which give transparent information about the *quality and heritage of terrain models*.
- To produce and update the current <u>dossier of test sites</u> and identify new sites, particularly to satisfy the cal/val requirements of future missions and generally improve access to validation data sets.

• Why are space agencies interested in topography?

- To ensure that geometric and radiometric errors in land products derived from satellites are corrected with the <u>best available data</u>
- Science requirements covering all the application areas of interest
- GEOSS social action agenda

Objectives of validation study

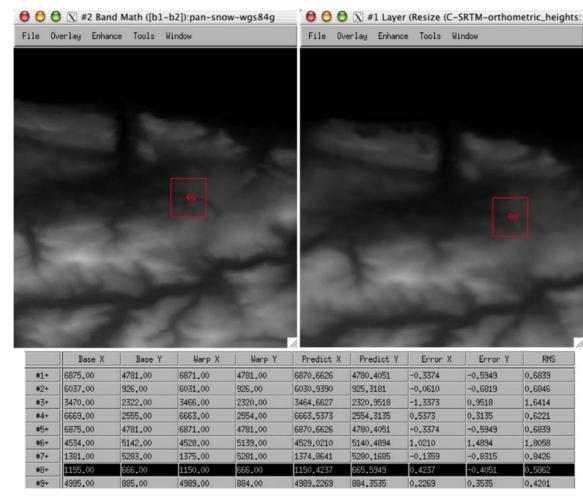
- Quality assessment of C- and X-SRTM DEMs using "bare earth" DTMs, high-resolution airborne DSMs and kinematic GPS
- Assess whether they meet the design specification for DTED-1 (Zrms≤18m) and DTED-2 (Zrms≤12m)
- Assess planimetric height accuracy via intercomparisons with "bare earth" DTMs
- Interpret height differences in terms of topographic variables, LANDSAT-derived enhanced vegetation index (EVI) and land cover

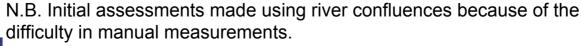


Test site Data Sets

Global CEOS WGCV-TMSG test sites

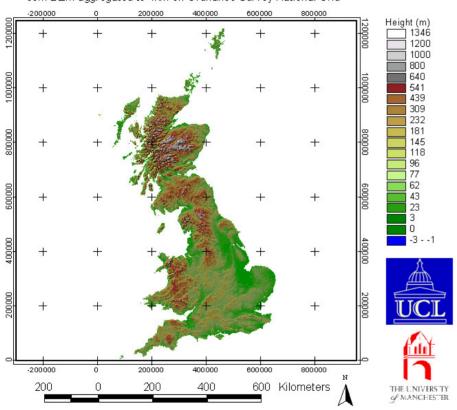
- Locations:
 - Snowdonia, UK
 - Catalonia, Spain
 - Aix en Provence, France
 - Bavaria, Germany
 - Puget Sound, WA, USA (data available online from CEOS-WTF at EDC)
- Criteria for selection based on availability of ground truth and previous use for validation of spaceborne DEMs
- Input data sets most at 1 arc-second (≈30m):
 - LANDMAP ERS-tandem (UK only)
 - C-Band (3") both JPL unedited and NGA edited (SRTM-DTED®, courtesy of Jim Slater, NGA and EDC prior to public release)
 - X-Band (1" converted to geoid) SRTM DSMs (Snowdonia, Catalonia)
 - Reference Data (DTMs, LANDSAT-7, 5)
 - Stereo optical DEM from Spot1 of Aix en Provence
 - Stereo optical DEMs from SPOT-5 HRS of all 3 non-UK sites
 - NextMap 5m DSM of Snowdonia,UK sub-areas (courtesy of B. Mercer, Intermap)
 - NASA-sponsored lidar DSM and DTM (2m) of Puget Sound


Critical Pre-processing Steps

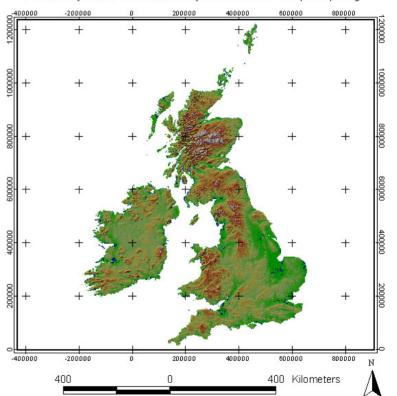

Global CEOS WGCV-TMSG test sites

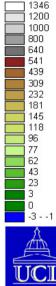
- Initial evaluation using side-side display, Red/Green displays and flickering in ENVI/IDL®, ARCgis® and ERDAS-IMAGINE® showed that there were planimetric shifts between SRTM and "ground truth" DEMs of between 1 to 2 (and occasionally up to 4) DEM grid-cell points (either resampled 50m OS® or 3")
- C-SRTM showed an overall translation wrt "ground truth" DTMs (either derived from generalised contours, e.g. OS® PANORAMA® or photogrammetrically derived DEMs)
- X-SRTM showed spatially variable higher order effects
- Datums checked, kGPS checked and no apparent differences between the different software packages
- Shifts also present between Star-3i (NextMap) and C-SRTM whereas there was NO shift with ground truth DTMs or ERS-tandem DEMs or SPOT-stereo DEMs
- Initial height difference maps showed that the differences were dominated by these planimetric shifts
- After selection of well-distributed GCPs a 1st order polynomial used to warp the two DEMs which removed almost all visible differences
- Horizontal shifts also present between JPL unedited SRTM and edited SRTM-DTED® probably due to the effects of thinning vs averaging

ample of planimetric shifts at GCPs



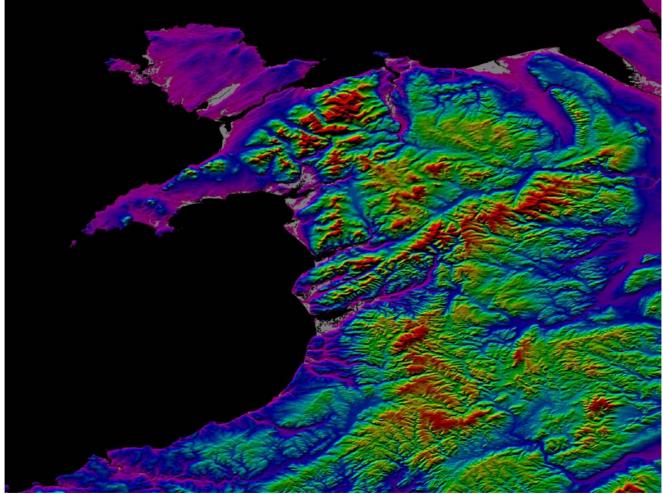
Intercomparison of OS® PANORAMA® (50m) and LANDMAP IfSAR DEM (30m)


Coloured and Hillshaded Panorama DEM - UK


50m DEM aggregated to 1km on Ordnance Survey National Grid

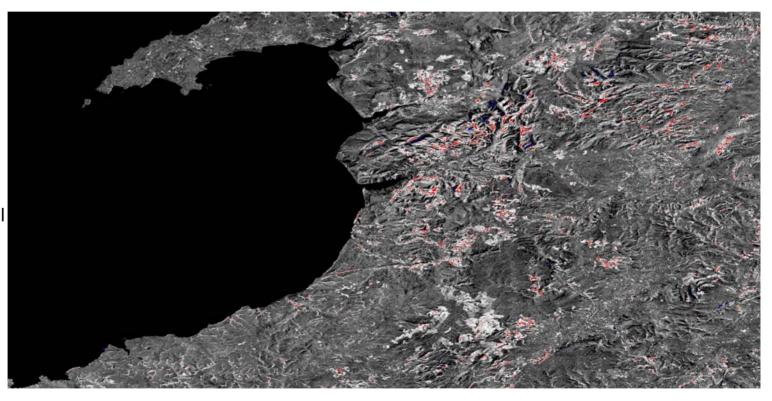
Coloured and Hillshaded LANDMAP DEM - British Isles

1" DEM Projected to Ordnance Survey National Grid at 1km pixel spacing



Height (m)

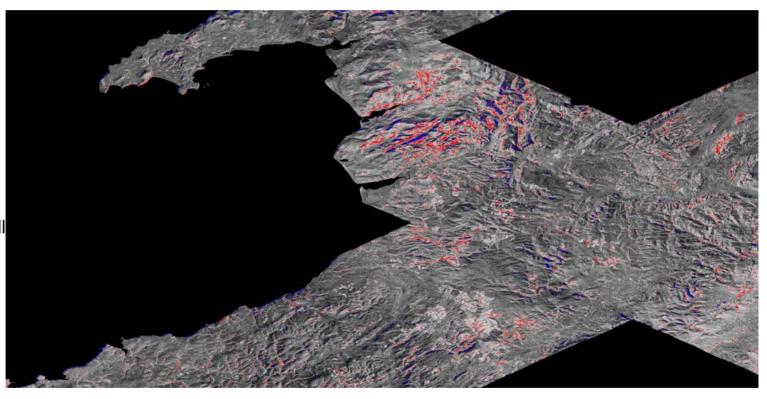
Snowdonia North Wales, UK - CSRTM DEM



CSRTM-OS® Red (>17m), Blue (<-17m) AFTER co-registration using tiepoints and "warping"

Height differences Dominated by: Radar shadows & Forest cover.

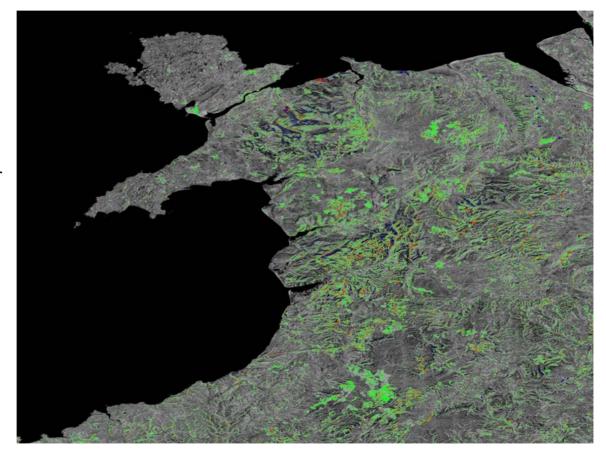
1.22±4.13m overall but for DEM differences excluding forest and radar shadow Is ≈1-2m!!



XSRTM-OS® Red (>17m), Blue (<-17m) AFTER co-registration using tiepoints and "warping"

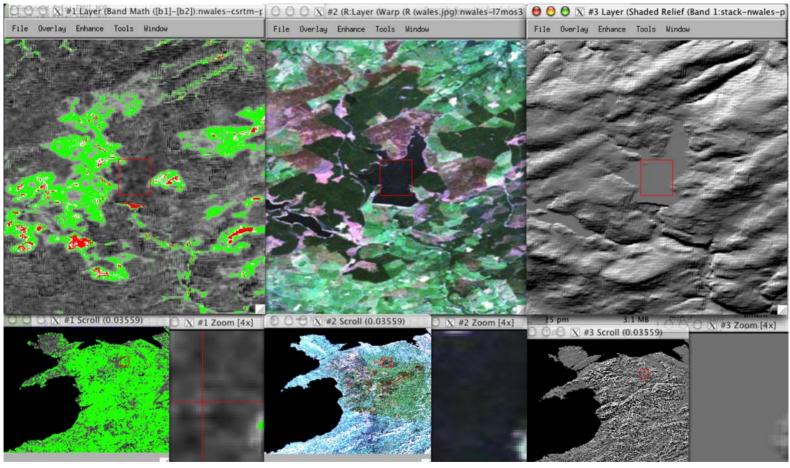
Height differences Dominated by: Radar shadows & Forest cover.

0.26±6.12m overall Planimetric offsets spatially variant.



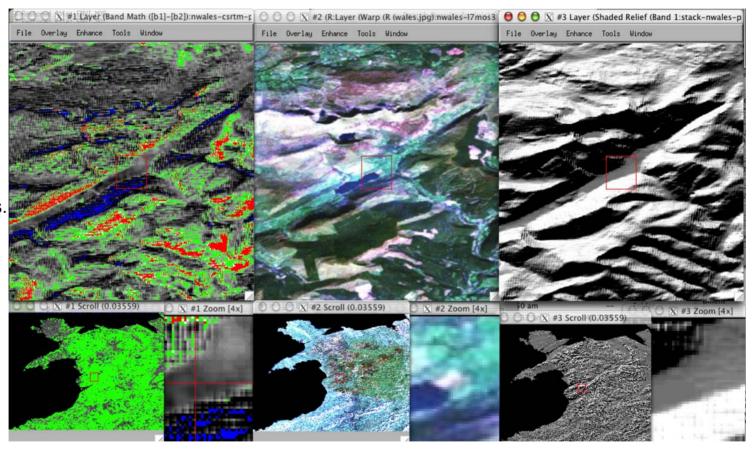
CSRTM-OS® Green (∂Z=9-16m)

Height differences in this range are closely linked to forest cover In this region



Example area showing impact of forest cover (Green=∂Z=9-16m)

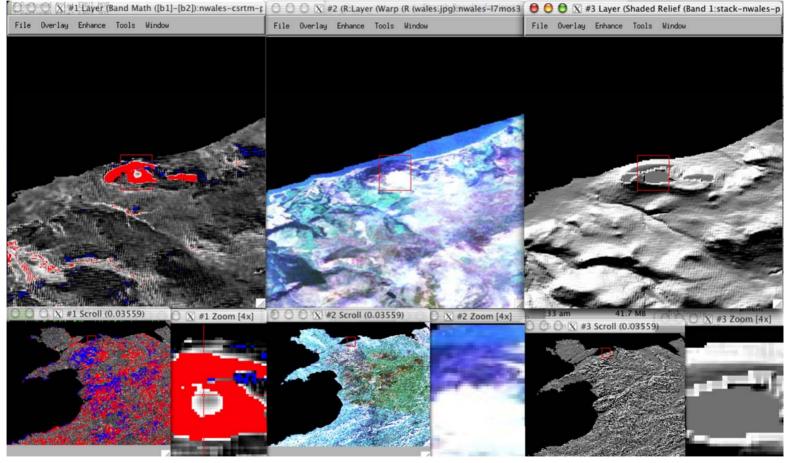
Committee on Earth Observation Satellites


CSRTM-OS®

OS® PANORAMA®

N.B. Limited examples of Slope/aspect effects. Cannot unscramble these due to impact of mosaicing of multiple "looks"

Example area showing impact of slope/aspect + forest cover

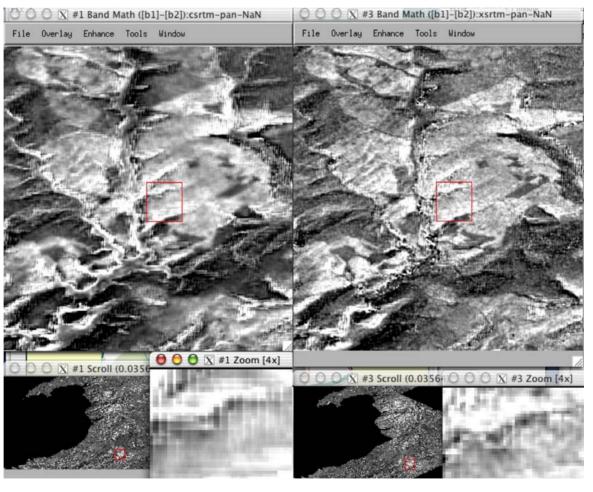

CSRTM-OS®

Landsat 7 (3,2,1)

OS® PANORAMA®

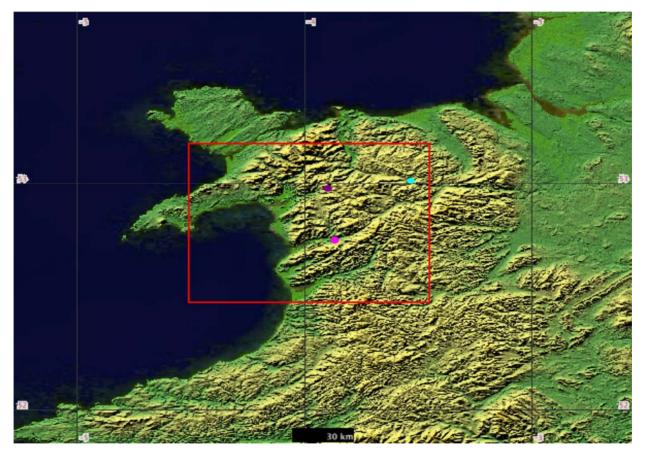
Example of landscape change from CSRTM-OS®: Mining Activities

Landsat 7 (3,2,1)

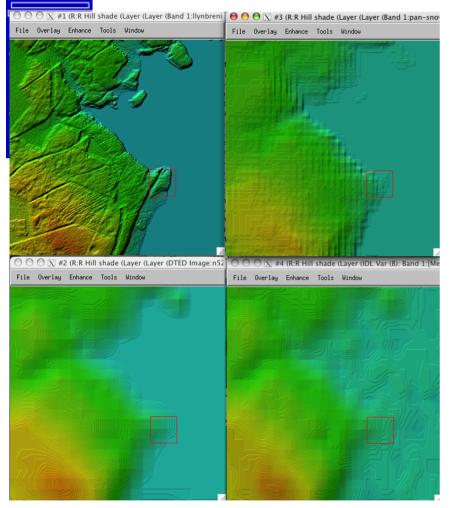

OS® PANORAMA®

Intercomparison of CSRTM-OS® and XSRTM-OS®

N.B. 1" XSRTM and 3" CSRTM differences with OS® DTM show little substantive differences. Little radar penetration at CSRTM for this area.



North Wales test-sites for NextMap® DSMs



N.B. Three coloured dots refer to three 10 x 10km NextMap test areas (courtesy of B. Mercer,InterMap technologies). NO co-registration performed

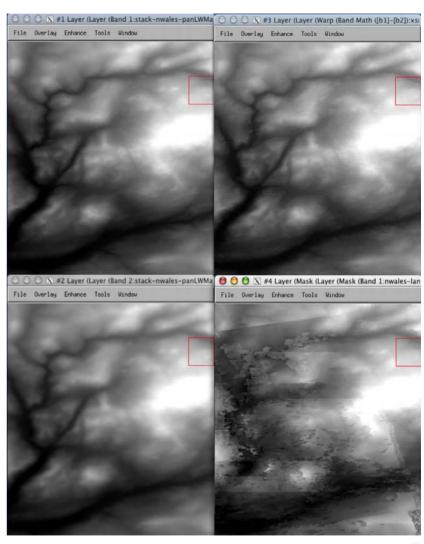
Summary of inter-comparison stats

Minffordd	Min	Max	Mean	Stdev
NextMap-PAN	-94.22	85.33	5.73	16.29
JPL-PANORAMA	-701.00	154.00	2.27	35.88
DTED-PANORAMA	-717.00	134.00	2.28	29.84
JPL-DTED	-482.00	698.00	0.07	10.37
JPL-NextMap	-712.16	125.61	-3.45	28.20
DTED-NextMap	-738.42	102.61	-3.44	23.31

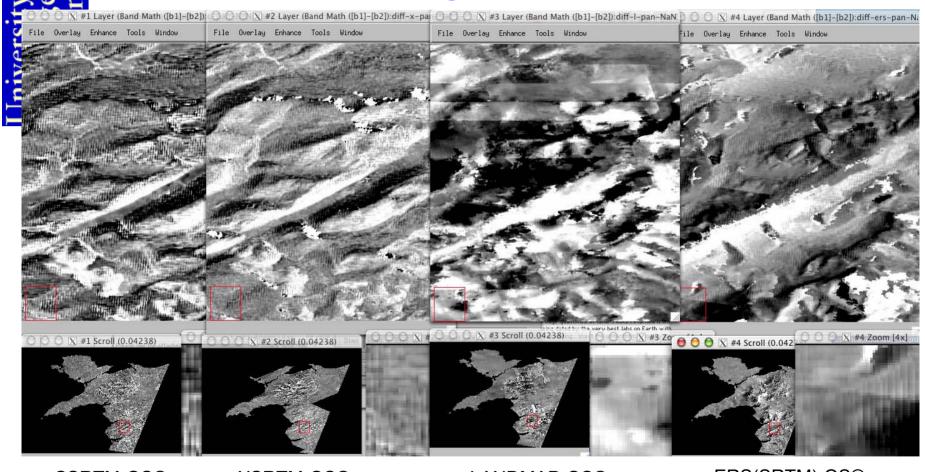
LlynBrenig	Min	Max	Mean	Stdev
NextMap-PAN	-54.75	47.07	-4.43	7.37
JPL-PANORAMA	-160.00	63.00	3.07	11.32
DTED-PANORAMA	-50.00	57.00	3.13	9.48
JPL-DTED	-161.00	17.00	-0.06	2.46
JPL-NextMap	-176.79	50.82	-1.36	9.01
DTED-NextMap	-50.45	43.39	-1.30	7.37

Ffestiniog	Min	Max	Mean	Stdev
NextMap-PAN	-74.46	46.47	-3.50	7.50
JPL-PANORAMA	-93.00	100.00	5.31	14.48
DTED-PANORAMA	-80.00	82.00	4.45	12.19
JPL-DTED	-19.00	23.00	0.86	2.76
JPL-NextMap	-72.90	74.66	1.82	10.46
DTED-NextMap	-62.36	63.66	0.95	8.52

NextMap (UL), OS PANORAMA (UR), SRTM-DTED1 (LR), JPL-SRTM (LR)


LlynBrenig

Inter-comparison of SRTM and LANDMAP

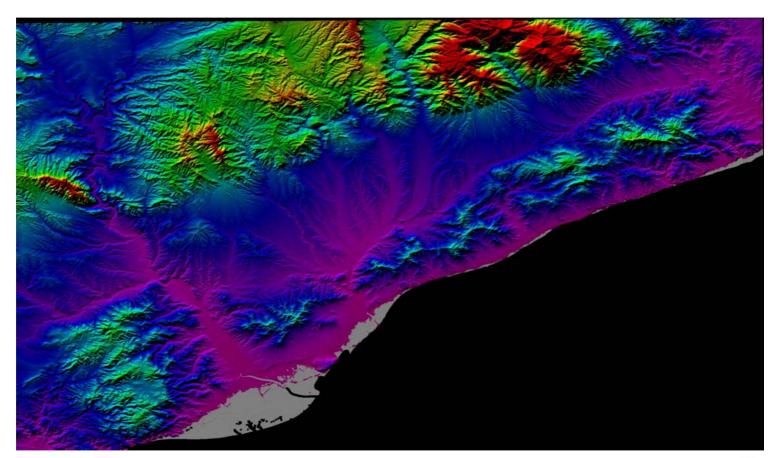

- Little difference between OS® (UL), X-SRTM (UR) C-SRTM (LL)
- ERS-tandem LANDMAP
 (LR) shows strong
 atmospheric artifacts and
 blocking due to phase
 unwrapping methods (MCF)
- SRTM DEMs were then employed for phase reference for ERS-tandem for subsequent processing.

of C-SRTM for densifying ERS-tandem to 30m Some impact on minimising atmospheric and blocking artifacts.

XSRTM-OS® 0.04 ± 5.74 m

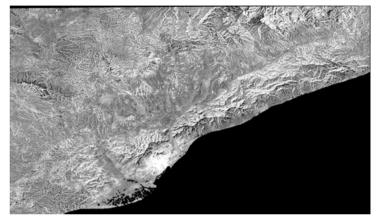
LANDMAP-OS® -0.1 ± 17.92 m

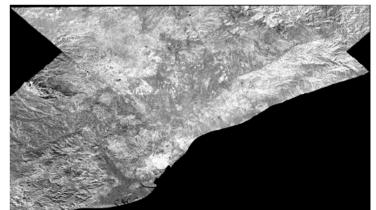
ERS(SRTM)-OS® -0.11±11.36m



Ground Truth 2

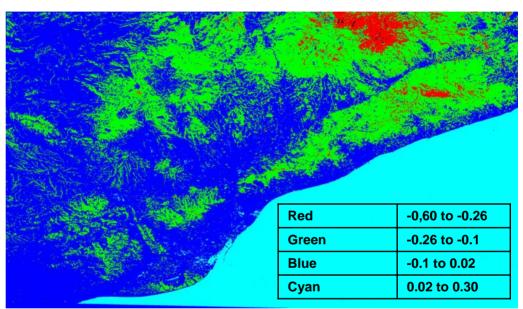
Test Site Catalonia/Barcelona 15m photogrametric DTM (±1.1m) Courtesy of W. Kornus, ICC, Barcelona

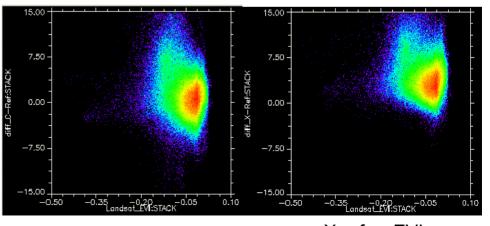




Intercomparison of C- and X-SRTM DEMs with reference DTMs

- CSRTM-reference(Upper Right) = 3.44±5.78m
- XSRTM-reference (Lower Right) = 4.32±6.63m
- Note correlation of forest with POSITIVE height differences





Assessment of the relationship of height difference to EVI

$$EVI = \frac{r_{NIR} - r_{Red}}{r_{NIR} + C_1 r_{Red} - C_2 r_{Blue} + L} \times G$$

- For MODIS, MERIS and LANDSAT use
- L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5
- Cluster of EVI in range-0.26 to -0.1

C-ref vs EVI

X-ref vs EVI

Conclusions

ECC-SRTM and X-SRTM elevation differences for Snowdonia test site:

- 1.22±4.23m (CSRTM OS®) cf. 0.26±6.12m (XSRTM-OS®)
- -0.1±17.92m (LANDMAP-OS®) cf. -0.11±11.36m (LANDMAP-OS®/C-SRTM)

SRTM and X-SRTM elevation differences for Barcelona test site.

- 3.44±5.78m (CSRTM reference)
- 4.32±6.63m (XSRTM- reference)
- Vertical Accuracy much higher than original specification (Zrms≤18m) and DTED-2 (Zrms≤12m).
- Height differences for SRTM correlated to
 - forest cover and EVI
 - Slope/aspect wrt radar look direction
- Horizontal accuracy appears NOT to meet specifications for all 4 European test sites (90-360m)
- Co-registration issues remain for CSRTM with national DEMs but more severe for XSRTM possibly due to single swaths (lack of multiple imagings)
- Use of SRTM DEMs can reduce RMS in ERS tandem DEMs but some atmospheric and blocking artifacts remain
- Further research to assess how"bare earth" DTM can be extracted from SRTM DEMs and penetration depth of C-SRTM using lidar DSM/DTMs

